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QUANTUM MECHANICS AS RELATIVISTIC STATISTICS
(THE CASE OF INTERACTING PARTICLES)

.Yu. A., Rylov-

ABSTRACT: It is shown that non-relativistic_quantum mechanics I
of two particles interacting with an external electromagnetic
field and with each other can be considered as the statistics
of two-dimensional surfaces representing the state of the
system consisting of two non-deterministic particles in
eight-dimensional space, which is the direct product of the
space-times for each particle.

The concept advanced in [1, 2] is applied in this work to the case of two /5*

'particles interacting with an electromagnetic field and with each other1.

Quantum mechanics [1, 2] is.,a form of relativistic statistics. It will be shown

in this work, in particular, that the quantum mechanics of two interacting

',: particles can be represented as the statistics of two-dimensional surfaces rep-

resenting the r-state2tof two particles in eight-dimensional space V12, which

is the direct product of the space-time V1 and V2 for each particle.

-;S ' We will formulate the fundamental concept. Classical particles3 presumably /6

interact non-relativistically 'with the environment (space). Consequently their

behavior becomes non-deterministic and unpredictable. The behavior of particles

can be described only statistically. The statistical principle [2] is used for

this purpose. With the aid of this principle a deterministic system - l 

*Numbers in the margin indicate pagination in the foreign text.
;, 1A bibliography and review of works on interpretation ,of quantum mechanics from

the viewpoint of classical mechanics can be found in [3].
2 Two different concepts of the state of the system are used'in the work. The
n-state (non-relativistic state) is defined at a given moment of time. Evolu-
tion of the n-state is described by equations of motion. The n-state of a

particle is its coordinates and pulsPe.

3 The r-state (relativistic state) is defined in the entire space-time. The
r-state obeys certain equations, which act as restrictions imposed on the
permissible r-statesz The r-states of a particle is the equation of its world
line ql = ql(T). See [1] for greater detail.

' ,3Particles are classical in the sense that the motion of each of them can be de-
scribed by .the world line in the space-time.
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statisticalj set - can be made to correspond to the non-deterministic system.

The relation between the statistical set and corresponding non-deterministic

system is established on the basis of the following two properties.

1. The state of a set is the density of the state of the systems compris-

ing it.

2. Any additive value ascribed to the set as a dynamic system (energy,

motion, etc.) is (with the appropriate standardization of the set) the mean

value for the systems comprising the set.

It turns out that it is possible to select the Lagrangian for a statistical

set, such that the description in the non-relativistic limit will be equivalent

to the quantum mechanics description. In order to achieve equivalent with

*AJi quantum mechanics it is important that-the parti~cles be described with the aid

of the relativistic concept of state (r-state).

I. Statistical Set for Two Particles in Electromagnetic Field

We will discuss a system consisting two particles. The r-state of the

eighth particle is described by the world line L : qA qA (TA), i = 0, 1, 2,

.3, A = 1, 2 in space-time VA (qA [i = 0, 1, 2, 3] are the coordinates in space

capsule VA). The r-state of a system of two particles is described by two-

-dimensional surface S = L1 OIL2 in eight-dimensional space V1 2 = V1 0 V
2.

The symbol O denotes the direct product.

We introduce the coordinates 0 (a = 1, 2, ...8) in V12:

a i (i)
v' xa = qA = q , a = 4(A - 1) + i + 1. (1.1)

In the ensuing discussion we will use, in addition to tensorial indices a, b,...

the double index (A). The correspondence between them is established by the

relation

a ++ (A), a = 4 (A;- 1) + i + 1, (1.2)

a = 1, 2, ... 8, i = 0, 1, 2, 3 A = 1, 2

2-



Summation is done in terms a, b,... from 1 to 8 and in terms of i, j,... from

0 to 3 according to the recurrence of Latin tensorial indices,land from 1 to 3

according to the Greek indices. Summation in terms of the capital indices,

indicating the number of the particle, is always denoted by the summation

symbol.

As shown in [2], the density of surfaces of state S in the vicinity of
·ab In the

point x of space V1 2 is determined by skew-symmetric tensor ja (x)'

case at hand, when S = L, 8 L2,

j(i) (K) = j(i) (K) = 0, i, K = 0, 1, 2, 3.1 1 2 (1.3)

abAccording to the statistical,,.principle .[2]-, the density j of surfaces of /8

state S is the state of a statistical set of two-particle systems. We will call

,this set a quantum set. In the case when the particles interact only with an

external electromagnetic field, the action for it can be written in the form

S=Scl + S.cl qu
(1.4)

cl=Sc[jab 
A=

( )b (a)c
mA1 3 bj ic

sj (A) d )d

2j 

D-1a b

eA (A)
+ -

c

2

Sq
u

8= Sc1 ab = - z 'MA
A=l

b

Pb A i (qA)} 6(u - C)d8x,
(A)

a3(2)b aj (A)c
I -I 

.1 - nb- a A c

6(n
rid

- C)d8x, (1.7)

3

parnb (j ab

(1.5)



0 0128
where - = (tl t2) t l =t ql qA {q qA2 qA' q3A '

n = C = const is to a cert'ain exterit-an arbitrary 7-dimensional surface

in space V2, in terms of which integration is done. The values jab a,

B = 1, 2,...2S are the variables to be changed, eA, mA are the charge and mass,

., respectively, of .the A-th.particle and c is the velocity of light;

3 2B- i3 '2B- 3
2B- 2B 2B , 2B (.

j =1 2 3 1 2' (1.8)
B=l 1 2 3 4 5 6 7 8

a(x " X X , X X, X, X, X, )

aT 9fl
T E E ' -v an

I- 6

2j is the partial derivative of J in terms of T and n b for fixed 3,a
-sabh at a

_- 3/X
a . A iA) (qA) is the fore-potential of the external electromagnetic

field in space VA. Since the electromagnetic field is external

A( i (q) = A(i) (q)= A (q), (1.9)
1 2

:,; i.e., the form of functions A(+) and A(i) is identical and they depend on dif-

ferent arguments in accordance with the fact that they pertain to different

spaces VA.

.ab
ja , as we already mentioned, is the density of surfaces of state S.

S'p = P(i)(x) is the canonical pulse, i. e., the mean of canonical pulse Pi



.of the A-th particle at point x. Formal-ly pa is the Lagrange factor, intro-

ducing the definition

ab aj
~ ,':,'.i - . (1.10)

b -a

It should be borne in mind that expression (1.6) for action Sc can be

derived from theaaction for two particles in the external magnetic field:

2 eA
S =E| -m AC dqA gikdqA + A. (qA)dqA ) ' (1.11)

C 0

A=l

0 -1 0 0

0 ' Q0-1 0 (1.12)
g _

ik -0 '.0 0 -1

i This can be done by examining a simple set4 of deterministic systems described

by action (1.11). The derivation can be done with the aid of the method

employed in [2] forfree particles. It turns out'.that and 2 denote the /10
and denote the /10

Lagrangian coordinates, i.e., the set of six values 1 2 a = 1, 2, 3 de-

-fines the number of the system ini:the set. Thus, the writing of Sc in form

(1.6) is not an arbitrary construction. It is noteworthy that examination of

simple set inevitably leads to S = 1 in (1.8). Furthermore, n is an arbitrary

function not only of tl, t2, but of x. In this sense discussion of a nonsimple

set and the discarding:Jof the condition S = 1 in (1.8) are a generalization of

4A simple set is defined as the set of surfaces of state S in which surfaces S
do not intersect (see [2]).

r f'.
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;the.result-,of (1.11). We will:not discuss here the need for introducing the

inon-simple set. This is examined in [2].

The introduction of action (1.7), in contrast to (1.6), is a special

assumption. (1'7) takes into account the non-determinancy of motion of a

'separate system. The result of this nonf-determinancy is 'diffusion" of surfaces

S from region of space to another. The rate of this process is proportional to
ab

!the gradient of density j of states of the systems. Accordingly, the
ab

iLagrangian is proportional to the square of density gradient j , and the pro-

portionality factor is h2 /8MA (t is the Planck constant). Squ essentially

contains the gradient of only one component j ( 2 since in the non-reli ,

tivistic case at hand all other components are muchi.less than j ( ) 2) = -j2)().

* Thus (1.17) is a special assumptioni, the -validity of which should be borne out

'by the results.

jI- We will now consider that in view of n = n(tl,t 2)

(A) aq =0 1,, 3, = 1, 2, (1.13)

and with the aid of (1.3) we will write the action in the form

S Sm +Smy + Sq (1.14) /11

=Iaa J2 -A
m ab a |EO) 0 A)

A=1 sj'A 3-A

(1.15)

E (At) r(B ((1 6A)j A(3-A-) a2j ) ( -C)d%
A B AB

B=1 a(

6



= S. [jab] : E 
A=l ''

eA

c

(A) (0A)
A 3-A B

j~ -- , - :Ai(qA
)

6( C -C)d x,
A.) ) 6(n -1:-A

aj(0) (0A)
a
A9

gu Sgu [jab] = 8i

8mA 3-A
J °

j(°) ( A)A

aqA
n 0

(3-A )

6 n :-CdB
(Tn - C)

'Variations of (1.14) in terms

n(tl, t2) yields equation

of Pa with consideration of the arbitrariness of
I ._, .' : . K

* j 3Ai A 2

A .3-A 

,j 3j = 0, A = 1, 2.

aT (i) an '
A A

(1.18)

We will introduce the definitions:

p ()(2) Pa j
p = 3 , Pal = J (1.19)

Variation in terms of jab with consideration of the arbitrariness of n(tl, t 2 )

yields the relation

P mAo A

(A)

P
0

(A)

eA
+'- -A (q A), A = 1:, 2, a = 1, 2, 3,CA

a a
= -m aAaA

2
fi2

2mA

·.1 . a2 p
-

eA
+ . ...0 (q)r- a~i a a cA 0 qA).-

VP' a-I AaqA

S
my

: !

(1.16)

(1.17)

(1.20)

(1.21)

7

i.:;
I '

a
2 pa2 =



It can be said of relations (1.20) and (1.21) that they are derived from the

corresponding relations for neutral.-particles by means of the substitution /12

eA

I) i C i+( q A )

We will renumber all B with the same index n = 1, 2,...6S + 2 (1 = T

i2= n). Variation in terms of (n - 3, 4,...6s + 2) yields the equation

6S 
6 E = ~(- C () a° p 0 i3 a 3 0, (1.22)

A B (A ) (0) =

n = 3, 4,...6s + 2.

for n = 1,2 (1.22) is an identity and therefore is valid for n = 1, 2,...6s + 2.

We will assumefor brevity

jab =a_2j (1.23)

.. aanb

Using the identity

D as.
= 0, (1.24)

ax c cr b n,a

6S+2
a_ a cb+ b ac c.ba2)

T~h a~ca~ba n n,d,,- d I+d d + 6 d
,n,a

we transform (1.22) to the form

nbjfac + 1/2 naj cb = b, c, - 1, 2,...8, (1.26)

18



!'where

fac = aaP3 ' acPp . a, c = 1, 2,...8. (1.27)
fac = a~c- ca :

After the transformations (1.26) acquires the:form

) A

=Aa + a , A, B= 1, 2.
3tB 3qA qA

Equation (1.26) yields the solution 7.2 J.-,;g_1

fac = ap - a =0, (1.28)

'although (1.28) does not necessarily follow from (1.26). It follows from (1.28)

that .---..'-

pa - ~'a a= 1, 2,...8, (1.29)

where p is some, as yet arbitrary, function of x.

We will examine the case of a potential solution of (1.29) substituting

(1.29) into (1.20), (1.21) and discarding oA, now we obtain

3 tA q2 mA [ A J qA ) (1.30)

h 2 1 a / a a A (q, A = 1 2.
2 mA Vp aq C

.A

'. The identity

3 a2 j
0

axb Tbn,0) (1.31)

j~~~:)~ ~ ~~~~~ 3 b (A

9



'is written with the aid of (1.18), (1.19), (1.20) and (1.29) to form equation

:-in the form - . i

I

ap
+

atA '

a 

aqA
m aq
A aqA

mAc P A (qA) = 0, A - 1, 2.
(1.32)

'The values j
j,_.

j

remain undefined. They can be determined by the relation

a fi2 a2p
pa1 2 4mlm2 a-a 7

1 2 qaq2

1 ap
P aq

(1.33)ap
aq/

Then in the absence of electromagnetic fields the laws of conservation will be

:satisfied:
.ab
-- = 0, a, b = 1, 2,.I..8,

;) X a ...... _.......
(1.34)

/14
Iin the case, however, when Ai(q) $ 0, (1:.34), generally speaking, is not

satisfied.

We will multiply (1.30) by - vFp exp' (i¢/fi, and (1.32) by ih exp(i¢/h)/

'./(2/p) and combine them. We obtain

(ih tA e 
- + -. A (qA )tA A)

1
0 2mA

(ih
a
a

a

+ A A (q) x
c a, ) (1.35)

x (ih a
a
A9

eA
c
c Aa(qA) ) = O,

A = 1, 2,

:where

1 = J49 e h

t 

.10 ..
~;{',,

(1.36)



It is obvious that the two equations (1.35) are always compatible. The

equivalent equations (1.30) and (1.32) are also always compatible.|

' Equations (1.35) describe evolution of the function ~ simultaneously in

terms of two times tl and t2. We-wiil now consider the non-relativistic point

of view, i.e., we will discuss the behavior of the set at equal times t1 = t
2
,

· ii.e., in seven-dimensional plane P7 of space V1 2. Carrying out the transforma-
tion

t + t t - t
t = T 2 ' (1.37)

2; 2

wie arrive, instead of (1.35) at two equations

8 2 eA i eA 
ih I ?Ao( qA 

) +(l) {0 A) + 2m ( a hc a / (1.38)
- - A

ih a eA +)

Equation (1.38) is the Schrodinger equation for two particles in an external /15

electromagnetic field. It contains Tr as a parameter. If the function i is

known for t = 0, T = 0, it can be determined for any t and T = 0 by means of

only one equation (1.38).

The state of the system in plane P7 is depictedjby a line and not by a

two-dimensional surface. Therefore the density of states is depicted by the

-:,vector j , (i = 0, 1, ... 6). In the coordinate system y = t, y = qa,

11
-e a -." 

Anown for t = 0, T = 0, it can be determined for any t and T = 0 by means of~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



has the form

·· 

&"g~p , Lt"' ~ · (1.40)

Cover Pare Title

-This can be proved by the method employpd in [2]. From the laws of conserva-

tion (1.32) follows the law of conservation

-- 7b ~. (1.41)

.0
-It follows from (1.40) that with the appropriate standardization j is the

· rover .Pace Sotrce
_density of the probability of dtecting1 'the first particle at point ql, and

-the second particle at point q
2
. The other components denote the probability

-flow denity. They are selected throughI the wave function so that this is

-prescribed by the equations of quantum mechanics

-2. Set of Interacting Particles

We will consider now the case of two charged interacting particles in the

absence of an external field. This means that in action (1.2) the fore-

-- potential acting on the first particle is governed by the second particle and

conversely. Strictly speaking, we should take into account the degrees of

-freedom related to the electromagnetic field. I considered only the non-

-relativistic case, where radiation is completely ignored.

In determining the Lagrangian of a system of two interacting particles
t4. r... 1 A r_ (I 1 1 ) - *1s1--A -I_ ~ - -1--- 

the tore-poLenial A i in (1.11) snoulo be consiaered as governea by the charges

of the particles. It is also necessary to consider the term omitted in (1.11)

-that describes the free electromagnetic field. In view of the Maxwell equation

it may be written in the form of equation

- ~~~~~~~~~~~~I

--... - - -r ____

A eiri- ~~~~~~~~~~~~~~~~~~d'
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-In consideration of this term and the Maxwell equations action (1.11)

--relativistic approximation (c -P-oc)ea'q.uiTeslIthe form

Cover Pa e Title

1 .2 . . ,
5J ±- K, · !

Ya 9 L -I

in non-

(2.2)

(2.3)

We willconsider a_simple set, consisting of systems described by action

-(2.2). Let I 3t[Je',: 3 ' ' j' Ipai enumerate the systems of the set and
f A a J UI t-

qA = qA(T,,n) , where n is a parameter acquiring the same value of c for all

-systems in the set. Then we have the action /17

- S94| - 'f(" . '-- -
r-. . - (2.4)

_We will transform relations qA q(T, ,) and will now regard (2.4) as the

hefunctional of , , n qA). Its extremals can be found by varying

-the action |

. j~~~~~~~~~~~_

-- 4J J(. i e 

.I '

- ta j"e" ) - O., -L x t) 

,l:-- ai ('--. - ·x i', '7)'* ' 2 2C'~~~~~~~~"' "") (xx"*, ,; *', ;x 9 '

-where

EvenEven

(2.5)

(2.6)

13

OddRoman

20

25

L~ ~ _ - - ----- -J_ ---- - -

I

R - T cr '

_...

Pt,J r /( ?". 7 J( 9, - ? J 

_ _ -- - - - - - - - , _ ._ _

I

I



and x as given by the relation (1.2).

_ Page OnE Title
Equatlion (2.5) is the action for a set of particles interacting according

to Coulomb's Law. We will makeCsome generalization in the sense of conversion

-from (2.6) to (1.8). We will compare (2.5) with (1.6). Then, considering

(1.3) and (1.13), we conclude that particle interaction is described by the

-term

' s.--~ : Ie, 

Thus, a quantum set of two non-relativistic particles interacting by

-Coulomb's law is described by thevactio, Source

_, ._- .° .. J: s.. · 1_,

-where Sm 2' Squ are defined by expressions (1 15), (2.7) and (1.17),

respectively.

Variation in terms of Pa and §B yields the former equations: (1.18)

(1.22), respectively. Variations in terms of j yields equations

-r -~7 -~ -~ -- ----L 1

- - M -- .. - .2 X ' 'f .' ,\

-Further, repeating all calculations from (1.18), (1.20)-(1

-Kobtain, instead of (1.35),

114 i- 1
Even Roman

L.22) to (1.35), we

(2.7)

(2.8)

IX /18

and

(2.9)

(2.10)
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(2.11)

. . .. . ... .. - . +

Cover PaSe Titfe

Both equations (2.11) are compatible, since equation

2.12)

2.13)

2.14)1

*" -L= _0 .(

in, instead of (1.38) and (1.39),

Cover Pace Source 
es\ 

it a)u, _ A'' /;

· E. ~,,.IO~i . , . .

- t Ad;I NI,, . .- ......

Al _ .A '
-i~~~

Equation (2.13) is the Schroedingel

-particles interacting by Coulomb's law.

Finally, the action for a quantum E

-external electromagnetic field is writtE

equation for two non-relativistic

3et of interacting particles in an

.n in the form

; (2.15)

here S S12, S S are given by (1.15), (2.7), (2.16) and (1.17),

-respectively. It is obvios that the Shrodinger equation for two interacting

non-relativistic particles in an external electromagnetic field can be ex-

_tracted from the equations of motion for such a set.

IA A15
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--3. Energy, Motion, and Moment of Quantum Set

-- To a quantum set, by any dyDnamic rsysteml,e can be made to correspond to
I Ienergy, motion and moment. These values can be determined cannonically from

-the Lagrangian. Let action (2.Cl(5)ebeP&finedlas the integral for some .egion

_Q of space V12:

(3.1)

We will subject coordinate x ly small transformation
a

20

. J

25 In the case whe

-of the form

30

_where Z is the

. -surface. Here

0
n 6x =

Ss= - { T' x -_, . d4 ,
55 ?

(r ah

Variation of action

(3.3)

seven-surface bounding space Q, and dS is an elera

T 1'
T, 2611~) =., Uar 6S

ment of this I

(3.4)

where

r_ L,- p,, ,7,b ,a (3.5)

-and summation is done in terms of allN/i.ndices that enumerate the variables that /20

-h ave to be changed, including the fa It that the left-hand side of (3.4)

L6_ r 
Even Roman Odd
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can be written as the convolution of Tbal c is the result of thenspecific form

of Lagrangian determined by relatiponsOr(1 .'l51,e (2.7), (1.16) and (1.17).

5 - In thle case when base S is bounded by two surfaces t
1

= T
1

= const and
Cover Pa;e Title 1

10 = T2 =|const (T2 T1), by selecting' (t
1

l, t2) = t2 t, we obtain for

~~~f-(3-3) l-, A 3.5)

;,L ~ ~ ~ ~ ~ p -| c,' dc;, d9 , A 2

20 -Vector ... Cover PacLe Source

-l a 'd = JT ( t d =T,, J I (3.6)

25 -" Y pa-t -

-plays the part o-f-thTe energy-motion vector and rT.mains-vali-d for a set o-f-free

particles. Tb plays the part of the energy-motion tensor. The fact that this|

3 tensor is of the third order and not the second, as is usually the case, is

related to the presence of two times.

Calculation by equation (3.4) yields for the energy-motion density of the

- system, described by action (2.15),

-- ____ __'_ _ ? ' l__ (3.7)

40 0

-where p is given by relation (1.20), and equation

A)

K: , __ --- '-"

E ' t 17
Even Roman Odd

i .. I.



We will raise the lower index in (3.7) with the aid of five-dimensional metric

-tensor (see Appendix). We obtaiinacin rgauge-Linkariant form

'5 T
210ltestia smallrot ti i th; A . " s V L , '"' ~A :, A e (3.10)

15_

Examining in like fashion transformation (3.2), which describes infini-

20 -testimally small rotation in thJoplanreaizA oo o, A
duce the moment of motion:

- --

30 Lwhere in the given case

40 -_ -

We introduce the operators RO 

41 5 I Ae) + V51 /UC ') =D 1.(3.13)

F ,_.. _ ....

FWe will assume that condition (1.28) is satisfied. Then
50 NAM

L=5 i~ 9 + _% ~,(i. (.13 

18 K 18
Even Roman Odd
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where 1* is a which is defined. in turn

(3.14)

(3.15)

hv \

A 9' ?AI Pa) a (3.16)

7 · Cover Pace Source.

In the case when the particles are uncharged (el = e = 0), all values

A ( 2A(0A 2) A()
-P c2P(A), MBA remain in force. Since P A c2P A MA (A = 1, 2) are

additives and related respectively to spatial displacement, temporal displace-

-ment and spatial rotation, then according to thelstatistical principle they canI

-be regarded respectively as the mean motion of the eighth particle, mean energy,

Eof the eighth particle and mean moment of the eighth particle.

- Equations (3.14)-(3.16) coin cide with the rule of calculating the means

0of these values in quantum mechanics if j is defined by the relation

It

s

J )y A dpd _ _ (3.17

_When this condition is satisfied in view of definition (1.19), p = ¢*4 can be

'regarded as the density of the probability of detecting the first particle at

..point q1 and the second particle at point q2. For this reason the mean value 

'of the arbitrary function F(q,. q,) is determined by the relation
F W _ l 2 _ -1 2 _ _ 
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( <F>) -= f Y F(9 , ) Y di d9I ................... , -

-The bra'cklt denote the mean valuver PaThe brackets denote the mean value.

(3.18)

e Title

4. Stationary States of Quantum Sets and Their Significance

We will consider a quantum set of two interacting particles in a given

external magnetic field. Let the electromagnetic field be stationary. Then

the fore-potential Ai may also be made stationary, i.e.,

1 - ° ' , a;....· ( i{(4.:

Cover Pale Source

_The state of the s

-in variables (1.37

_tl = 22 or for T =

-s.tationar-yif i.td

1)

et depends, generally speaking, on two times t1 and t
2
, or

), on t and T. We will analyze the set for identical times

0, which is equivalent. We will call the state of the set

oes. not-depend on_t_when_T--O= 1.. .e.' , 

._ ,_

(4.2)ad -. =O r' jwhere = (4.2)it a' t-2 48 -

_Conditions (4.2), in fact, are not inde]

-(1.19), (1.20), (3.8) and (4.1), is the

-(4.2).

pendent, in the second, in the view of

consequence of the first condition

_ We will find an equation which the stati6nary state satisfies in the

-assumption ahat (1.28) is satisfied. From (4.2) and (1.29) follows

_ -. (The function of ToS ) is not )( t) toequaion ht (4.3)

-(The function of T is not indicated.)NAdding to equation (1.39) the term
~~~~~~~~~~~~euto _13Q _h t _ -

F Ro
Roman

/23

20_
Odd

5

10

20

25

30

35

[20
Even

I .... _J

-1
I

I



2/(2R12 ) , we write them in the form r

The right-hand side does not depend on t, therefore, 3i/~t also does not depend1
-on t, and (4.3) acquires the form _ |

1P11~~~~~~~~ 5 r f . ( q (4.5)

+ +

where H ' is a real constant. Combining. the two equations (1.32) and consider-

20 ing p to be independent of t, weo'bta c'.e Source

, - - r -- a' .4,(/) = G. j (4.6)

25 ..

Comb-ining -4')4 -and -(-6'--we -ob-tain fhor thefunction-frm .36)

-equation

a30 A 2A t /( t )'

-1 c :(1 )c~ H + s(4.7)

351' -r
- Thus, the problem of finding the stationary state of the set is reduced

_to the problem of seeking out the Eigenfunctions land corresponding Hamiltonians:

F!0 /1- '.rm/ c. f~AJ f j'alpt - ' 4, '(4.8)

45 'It is obvious that the converse is also valid, i.e., if

ktt
| .. (. . t = . ..... (4.9)

50where q s gneuntonH w
k_, i- ,- ] .. .. ,__ 2:_ _ _ _ _ _ _- ( here ~ is Eignefunction]H wit eigenvaluesHI, then the valuesn Ra

Ee ron d-2.1d
Even Roman Odd '
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constructed from will not depend on t! Actually jab can be constructed from
constructdFor p and v A we have

EVA and p by using equations (1.19)anr p and v3)A we have

IS at JJ. = H1 )3e ( ) qe kqt ) - (4.10)

i.} Ofb(R ·9~) -e -of .A (4.11)!

5 .e., p and vA are not functions of t. /25
/5 A

The traditional statistical interpretation of quantum mechanics [4,

-chapter 3, section l]Ican be derived from the following two hypotheses.

20 - 1I. If to R corresponds op egatorp.,ethenr~ f(R) corresponds operator

ff (R).

2. The mean of any value of R in state i is defined by the-:relation

25 I L -

- (R> = R d'. (4.12)

30 The integral in (4.12) denotes integration in terms of all arguments on which

-the wave function depends.

The validity of (4.12) was derived from relativistic statistics5 only for

35 the additive values and arbitrary functions of the coordinates. Relation

-(4.12) for the arbitrary value R cannot be derived from relativistic statistics.

Moreover (4.12) is incompatible with relativistic statistics, since it follows

40 -from (4.12) that a particle cannot possess simultaneously a certain coordinate
-and a certain pulse [5]. In this connection the following question arises:

-to what degree is (4.12) essential for explaining, experimental data and is it

Fossible to explain experimental data simply on the basis of relativistic
' -statistics? I cannot answer this question conclusively here and will make

',]only a few comments.

-KI call relativistic statistics the con ept advanced in [1, 2] and developed
50 -in this article.

L 2R2 a _
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It follows from (4.12) that measurements can given for R only a value

-coinciding with one of the eigenVarluesnofrfbpbrator R, corresponding to R. TheFoe Ih r
-fact is, hlowever, that it is possible to measure only those values which commute

with the Hamiltonian of the syst,emgrand'!;th-ei state of the system being measured

must be stlationary. This was proved by Von Neuman [4, Chapter 5, section 1).

Actually, in the framework of quantum mechanics measurement of any value

FR pertaining to system S, with wavefunction p, amounts to some action on system,

-.S. As a result of this action, Hamiltonian H of the system is measured so that

I-the values of R begin to commute with operator R, and state p becomes a

stationary state, i.e., the Eigenstate l(f operator H of the system. This occurs

Fbecause no measurement is made instantaneously and state i must be such that

fit changes little during the time of measurement, i.e., should be the stationary
Cover PC Source

state. But if operator R commutes wit the Hamiltonian its Eigenvalues] R* may

be used for numbering the Eigenstatejof the Hamiltonian.

-t eRelativistic statistics states, on the other hand, that the stationary

_states can be found as the Eigenstates )f the Hamiltonian. This was proved

-for the case of two interacting particles in an electromagnetic field, and is

_apparently valid for other cases. Therefore, the R' of any measured value R

-can be regarded as the "number" of its stationary state, and it can be deter-

Fmined by identifying the stationary state. From this point of view any

measurement can be reduced to identification of the stationary state of a

quantum set. The stationary states here play an exceptionally important role.

Suppose, for instance, an atom is placed in a magnetic field directed

along the c-axis. Operator Mz of the projection of the moment onto the z-axis
Hzz I

_commutes with the Hamiltonian of the atom and the energy levels are numbered by,

the Eignevalues of operator M (but not by them alone). Suppose the atom,

under the influence of excitation, changes from one stationary state p' with

M = M'
z

to another stationary state 1" with M = M"' and emits a photon. Byz z z z
-recording the frequency of the photon it is possible to identify the levels

between which transition occurred and to determine M' and M".z z

_ NA A
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Thus, in the given case the moment of motion M is measured only to the

_extent that it numbers the statiiounyacrY0 1sf'ate elf it can be shown that any real

-measurement amounts to identification of some stationary state, it thereby

will be sh own that relativisticstatis.ticsTcan explain experimental facts just

-as success;fully as quantum mechanics. l

- If two particles are identical, then their identity is considered as is

done in [2], leading to the relation

.. (ti s , 9, ) Y ( t' 

- Generalization of all results to tl

_an easy task. Cover Pan

Covena

w

(4.13)

he case of n interacting particles is
Se Source

'4' _______ _______

- NA. A

E24 Roman Odd
Even Roman Odd

10

15

20

25

35

I

;



PagAPPENDIXt l e /28

5 _
GAUGE-INVARIANT FORPloOFrENERGYTMiTITON TENSOR FOR PARTICLE

IN ELECTROMAGNETIC FIELD

-10 0 The motion of a particle in an electromagnetic field is described by the

_action of

mi5 - / g ...... -- __ _ _ __ _ ......................(A.1)

- ~~~Se = 2vP /}f (X| = ,61Z; F,,F ' (A.2)

(A.3)
25 025 - t ,r (-) ' i,-((3

where xi are arbitrary curvilinear coordinates in the prime space, qik is the

30 -metric tensor, and 

(A.4)

35
The energy-motion tensor can be calculated by two different means. The

first means, variation in terms of qik' yields equation

40 . 7-.... _ _ .--

- _ _ 91 Y -9 dt, -I .- I (A.5)

45 -The second, cannonical, yields

A
= E ", L (A.6)

[ , _ 25
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where u are variables, in terms of which the action is varied for obtaining

the equationsfof motion. Page O itle

The first method yields, respectively, for S and S /29
Cover Pace Title

io T C*(X)= MC
4C jT ( ( / *(A.7)

15 -and T O is the root of the equation

. (') - x = G, (A.8)

20 r -

T. (X = - B g F j5 (A.9)

25 _

The cannonical method, whereas, yields

, [ .,' .;' .f . .
30 0 (kC_9 - - 4(x)Q qV (- |(A.10)

The argument T
0

is omitted everywhere

35

-(() -, (e ,c'U' ) , (A.ll)1

40 -From the Maxwell equation F

45 - - _ ,(A.12)

follows

- - ._

50'W) yt ( ) 6n, eZC C', 1e Lc+1 3 ( AM" F ). (A.13)
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Thus the different methods of determining the energy-motion tensor yields

-the same expression for the compl ete -nergtnd motion, but the energy is

-distributed differently between the particles and the electromagnetic field.

Cover Pail Ti-1-' - If, however, we take the point of view [61-[9] that the real space timeP Cover P1~~~~~a 4 1Lis bi-dimensional and closed with respect to the fifth coordinate x , where the

fifth coordinate is spacelike, and denotes that the corresponding cannonical

-pulse p4 is the electrical charge, expressions (A.7) for Tik and (A.10) for

Tlm are equivalent. The fact is that in such five-dimensional space the metric|

-tensor y , A,B = 0, 1, 2, 3, 4 has the form

(A. 14)i

+

25 where Q is some universal dimensional c,

-cannonical energy-m-otion-charge tensor 

-is given by relation (A.10), Om 4 descr

30 r

9nstant (energy x charge- ). The

is of the form Icur' e :ari and-0-1 h --
Ie Itne feim k' m 4 t f

.bes the fore-current arid has the form

£ (

_ L 4 C Ij i (AAB
-By raising the second index of 0

m
A (A 0, 1, 2, 3, 4) by means of y , we

-obtain

-- _ _ _ - -( TA_.' 1·8"8~ a,,, L _ t Ads s + a = -(A

.s15)

.16)1

-Thus, from the point of view of equatio s (A.7) and (A.10), these are two

-different forms of the same expression. (A.7) is gauge-invariant expression

and has an advantage over (A.10). InN sch five-dimensional interpretation,

I__ A
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-generally speaking, the gauge-invariant

_indices, acquiring the values O,plge2Cnm

-ing the value 4 are covariants.

Cover PaI

.~~~~~~~~~~~~~~~~~~~~

tensor components are those whose

I,Ta'eecontravariants, and those acquir-

e Title
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